
TD 1 - C - Classe de stockage, types, pointeurs et

manipulation mémoire

Hugo Bolloré1

1hugo.bollore@uvsq.fr

Exercice 1.1 Classes de stockage

Question 1.1.1 Statique et registre
Copiez le code suivant et expliquez les résultats affichés par le programme.

#include <stdio.h>

void storageClassesTest() {

// static_val is static (scope: within block, life: till end of program)

static int static_val = 1;

// register_val is a register variable (scope: within block, life: till end of block)

register int register_val = 1;

// incrementing variables

static_val++;

register_val++;

printf("Static value: %d \n", static_val);

printf("Register value: %d \n", register_val);

}

void main() {

storageClassesTest();

storageClassesTest();

}

Que fait la classe de stockage register ?

Question 1.1.2 Châınes de caractères et classe de stockage automatique
Copiez et compilez le code suivant :

char * obi() {

return "Hello";

}

char * one() {

char str[] = "there";

return str;

}

Expliquez pourquoi le compilateur n’accepte pas le code de la fonction one
alors qu’il accepte celui de la fonction obi. Pour cela, essayez de retrouver quelle
est la classe de stockage de tous les éléments dans les deux fonctions.

1



TD 1 2

Question 1.1.3 Externe
Implémentez un exemple montrant l’utilisation de la classe de stockage ex-

terne (extern). Pour cela vous devrez créer les fichiers suivants :

• Un fichier answer.h qui contiendra la déclaration de la variable answer,

• Un fichier answer.c qui contiendra la définition de la variable answer,

• Un fichier joke.c qui affichera le texte ”Why do computer scientists get con-
fused between Halloween and Christmas ?” et appelera ensuite la fonction
suivante :

printf(answer, 8*sizeof(int) - 1, 8*(sizeof(short) + sizeof(char)) + 1);

La variable answer sera une châıne de caractères qui devra contenir ”Because
Oct %d = Dec %d”.

Bonus : expliquez la réponse.

Exercice 1.2 Allocation mémoire et pointeurs

Question 1.2.1 malloc et calloc
Lisez la documentation des fonctions C malloc et calloc et implémentez un

programme qui répond aux contraintes suivantes :

• Il doit prendre en paramètre le nombre d’éléments à allouer (ce seront des
entiers non signés)

par exemple : ./my awesome program 42,

• Il doit allouer dynamiquement un premier tableau qui doit pouvoir con-
tenir ces éléments en utilisant la fonction malloc,

• Il doit allouer dynamiquement un deuxième tableau qui doit pouvoir con-
tenir ces éléments en utilisant la fonction calloc,

• Il n’initialise PAS les valeurs dans ces deux tableaux,

• Il doit afficher l’adresse et la valeur de chacun des éléments de ces deux
tableaux.

Exercice 1.3 Arithmétique de pointeurs

Question 1.3.1 Parcours d’un tableau
Reprennez le code de la question 1.2.1 et ajoutez une initialisation des valeurs

des deux tableaux en utilisant uniquement de l’arithmétique de pointeurs.

Question 1.3.2 Void
Commentez l’initialisation des valeurs que vous avez ajouté précedemment

puis changez la déclaration de vos tableaux pour que ce ne soit plus des pointeurs
sur des entiers mais des pointeurs sur void. Vous aurez besoin de cast vos
tableaux en int * pour afficher leurs valeurs.

Question 1.3.3 Arithmétique de pointeurs et void
Décommentez l’initialisation des valeurs des tableaux. Que remarquez vous

? Que faut-il changer pour que l’initialisation fonctionne de nouveau ?


