
TD 3 - C++ - Polymorphisme

Hugo Bolloré1

1hugo.bollore@uvsq.fr

Dans ce TD nous utiliserons le langage C++, vous aurez besoin du compi-
lateur g++ pour compiler les codes donnés par la suite.

Exercice 3.1 Polymorphisme ad hoc

Question 3.1.1 Surcharge d’opérateur
En vous inspirant de l’exemple donné en cours, ajoutez les surcharges d’opérateurs

manquantes dans le code suivant :

• L’opérateur * appliqué au type duck doit multiplier la valeur de first par
la valeur de l’opérande entier,

• L’opérateur >> appliqué au type duck doit effecteur un décalage binaire
à droite de second d’autant de bits que la valeur de l’opérande entier,

• L’opérateur / appliqué au type duck doit diviser la valeur de third par la
valeur de l’opérande entier,

• L’opérateur + appliqué au type duck doit additionner la valeur de fourth
avec la valeur de l’opérande entier.

#include <iostream>

using namespace std;

struct duck {

double first = 16.75;

short second = 222;

int third = 525;

char fourth = '7';

};

ostream& operator<<(ostream& os, const duck& anjou) {

return os << (char)anjou.first << (char)anjou.second << \

(char)anjou.third << (char)anjou.fourth << endl;

}

int main()

{

duck bourgogne;

bourgogne = bourgogne * 4;

bourgogne = bourgogne >> 1;

bourgogne = bourgogne / 5;

bourgogne += 55;

cout << bourgogne;

return 0;

}

Question 3.1.2 Surcharge de fonction
Implémentez les fonctions nécessaires pour que le code suivant soit fonction-

nel :

1



TD 3 2

• somme(int, int) doit retourner la somme des entiers,

• somme(const char*, const char*) doit retourner la concaténation des deux
châınes de caractères.

#include <iostream>

using namespace std;

int main()

{

cout << somme(11,11) << somme("v'la", "les flics!");

}

Exercice 3.2 Polymorphisme paramétré

Question 3.2.1 Patron de fonction
Écrivez un patron de fonction unique qui applique le chiffrement de César

sur un tableau quelque soit le type des éléments contenus.
Le patron de fonction doit s’appeler cesar et les paramètres seront les suiv-

ants :

1. Le tableau d’éléments de type générique,

2. Le nombre d’éléments du tableau (entier),

3. Le décalage à appliquer (entier);

#include <iostream>

using namespace std;

int main()

{

int li[5] = {69, 66, 73, 73, 76};

char lc[5] = {86, 74, 71, 84, 71};

cesar(li, 5, 3);

cesar(lc, 5, -2);

for (int i = 0; i < 5; i++)

cout << (char)li[i];

cout << endl;

for (int i = 0; i < 5; i++)

cout << (char)lc[i];

cout << endl;

}

Question 3.2.2 Patron de structure et patron de fonction
Mettez à jour le code précédent pour que les tableaux utilisent les templates.

La structure myArray devra avoir un template constitué d’un typename et d’un
size t N et les champs suivants :



TD 3 3

1. Un tableau de N éléments de type générique.

Vous aurez à mettre à jour la fonction cesar qui n’aura plus besoin de son
second argument et qui devra prendre en paramètre une structure myArray au
lieu d’un tableau.

Pour vous aider, voici le code pour initialiser, appeler la fonction cesar et
afficher les résultats.

#include <iostream>

using namespace std;

int main()

{

myArray<int, 5> li = {69, 66, 73, 73, 76};

myArray<char, 5> lc = {86, 74, 71, 84, 71};

cesar(li, 3);

cesar(lc, -2);

for (int i = 0; i < 5; i++)

cout << (char)li.array[i];

cout << endl;

for (int i = 0; i < 5; i++)

cout << (char)lc.array[i];

cout << endl;

}


	TD 3 : C++ - Polymorphisme

