
TD 4 - Javascript, Rust - First-class functions,
Closures

Hugo Bolloré1

1hugo.bollore@uvsq.fr

Dans ce TD nous utiliserons plusieurs langages, le Javascript et le Rust.
Pour le langage Javascript, pour rappel vous avez 2 choix :

1. Dans votre navigateur, allez sur le site https://playcode.io/javascript

2. Téléchargez le package nodejs, écrivez le code dans un fichier script_name.js
et le lancer avec :

node script_name.js

Pour langage Rust :

1. Dans votre navigateur, allez sur le site https://play.rust-lang.org

2. Suivez les indications sur cette page pour installer un environnement de
développement pour Rust https://www.rust-lang.org/learn/get-started

Exercice 4.1 First-class

Question 4.1.1 First-class citizens
En Rust, les fonctions sont des objet de première classe, modifier le code

suivant pour que la fonction example soit affectée à une variable puis appelée
via celle-ci plutôt que directement.

/* "fn" keyword for functions
- example is the name of the function,
- n is the first parameter name, its type is set using

- ":" keyword followed by the type: i32 for integer 32 bits
- "->" keyword allows to specify return data type*/
fn example(n: i32) -> i32 {

/* "return" keyword is optional:
if missing the last statement is considered as the return
statement*/
n+42 // return n + 42

}

fn main() {
/* Let is the keyword to declare a variable, by default they
are immutable*/
let ie_7 = example(7);

/* println operates in the same manner as C printf except you
don't have to specify the parameter type for standard
transformations
- "{}" are replaced by parameters in the order given
- "{var_name}" can be used to directly refence a variable*/
println!("{} < {} < {ie_7}", example(5), example(6));

}

1

https://playcode.io/javascript
https://play.rust-lang.org
https://www.rust-lang.org/learn/get-started

TD 4 2

Question 4.1.2 First-class functions
En reprenant le code précédent, créez une fonction mul_by_two qui permet

de multiplier par 2 un entier et passez cette fonction en paramètre de la fonction
example. La fonction example devra être mise à jour pour appeler cette fonction
sur la variable n avant de retourner le résultat additionné de 42. La syntaxe
pour passer en paramètre une fonction en Rust dépend de plusieurs paramètres
:

• Si vous souhaitez passer un pointeur de fonction :

<param_name>: fn(i32) -> i32

• Si vous souhaitez passer une fonction, vous devez spécifier deux choses :

1. Le type de fermeture :

– Le mot-clé FnOnce s’applique aux fermetures qui ne peuvent être
appelées qu’une seule fois,
<param_name>: FnOnce(i32) -> i32

– Le mot-clé FnMut s’applique aux fermetures qui peuvent modi-
fier les valeurs capturées,
<param_name>: FnMut(i32) -> i32

– Le mot-clé Fn s’applique aux fermetures qui ne modifient pas les
valeurs capturées ou qui ne capturent aucune valeur.
<param_name>: Fn(i32) -> i32

2. Le type de dispatch :

– Statique :
<param_name>: impl Fn(i32) -> i32

– Dynamique :
<param_name>: &dyn FnMut(i32) -> i32

Question 4.1.3 ??
Après cette modification, comment qualifieriez vous la fonction example ?

Question 4.1.4 Anonymous functions
Commentez la fonction mul_by_two et faites la fonction anonyme équiva-

lente lors des appels à la fonction example. La syntaxe en Rust pour déclarer
une fonction anonyme est la suivante :

toto(18,|n: i32| n * n * n);

Les paramètres de la fonction anonyme sont contenus entre les | et le corps de
la fonction est défini juste après.

TD 4 3

Exercice 4.2 Closures en Javascript

Dans le langage Javascript, une fermeture est automatiquement créée quand
une fonction en retourne une autre, par exemple :

cookBanana=function(preparation, cuisson){
return function(ingredients){

return preparation + ", " + ingredients + ", " + cuisson;
}

}

recette=cookBanana("éplucher banane", "aucune cuisson");
console.log(recette("ajouter chocolat fondu et crème chantilly"));
console.log(recette("ajouter miel et amandes grillées"));

Ici la variable cookBanana contiendra une fermeture qui est utilisée par la
suite pour présenter plusieurs recettes.

Question 4.2.1 Génération de code html
En vous inspirant de l’exemple précédent et d’un exemple de table en html

(link to an html table example), écrivez un code Javascript qui permet de générer
une table html de 2 colonnes et 3 lignes et qui utilise exclusivement des ferme-
tures pour ajouter les balises html aux éléments du tableau.

Exercice 4.3 Closures en Rust

Dans le langage Rust, la création d’une fermeture peut se faire en dehors
d’une fonction imbriquée et la syntaxe est la même que celle utilisée pour les
fonctions anonymes vues précédemment.

let print_text = |x| println!("Text: {x}");

Vous pouvez également utiliser un format multi lignes :

let print_text = |x| {
println!("Text: {x}");

};

Question 4.3.1 Closure sans capture
Écrivez une fermeture qui multiplie deux valeurs entières et retourne le ré-

sultat.

Question 4.3.2 Closure avec capture
Écrivez une fermeture qui affiche la valeur d’une variable string définie en-

dehors de la fermeture.

let my_string = String::from("I am your father!");

Question 4.3.3 Closure avec capture qui modifie une variable
Écrivez une fermeture qui modifie puis affiche la valeur d’une variable string

définie en-dehors de la fermeture. Vous aurez besoin du mot-clé mut qui permet
de spécifier qu’une variable pourra être modifiée :

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_table3

TD 4 4

let mut my_string = String::from("I am your father!");

Question 4.3.4 Closure avec capture qui déplace une variable
Écrivez une fermeture qui affecte la valeur d’une variable string définie en-

dehors de la fermeture à une variable locale à la fermeture puis qui affiche la
valeur de cette variable locale.

En dehors, et après la définition de la closure, essayez d’afficher la variable
string d’origine. Que se passe t-il ? Regardez les explications du compilateur,
consultez la page d’erreur qu’il vous indique, expliquez quelle est la fonctionnal-
ité de Rust qui cause ce comportement et mettez à jour le code pour éviter ce
problème.

	TD 4 : Javascript, Rust - First-class functions, Closures

