
TD 5 - Python, C, Haskell - Tail recursion,
Siblings calls, Evaluation strategy

Hugo Bolloré1

1hugo.bollore@uvsq.fr

Dans ce TD nous utiliserons plusieurs langages, le C, le Haskell et le Python.
Pour le langage Haskell, utilisez le site suivant : www.tutorialspoint.com
Pour le langage Python vous avez 2 choix:

1. Dans votre navigateur, allez sur le site https://www.online-python.com/

2. Installez le package python3 sur votre installation linux, et utilisez la com-
mande suivante pour lancer un script python :

python myscript.py

Exercice 5.1 Tail end

Question 5.1.1 Tail recursion
Ecrivez en C une fonction moyenne qui calcule la moyenne d’un tableau

d’entier en utilisant une récursion terminale.

Question 5.1.2 Siblings calls
Copiez et compilez le code suivant avec le compilateur gcc. Utilisez les

options suivantes pour générer deux versions différentes de votre programme :

• -O1

• -O1 -foptimize-sibling-calls

#include <stdio.h>

int __attribute__ ((noinline)) sister(short a, short b)
{

return a + b;
}

int brother(long long n)
{

if (n == 1)
return 1;

else
return sister(n%21, n%21);

}

int main()
{

printf("%d\n", brother(44));
return 0;

}

Utilisez ensuite la commande objdump -d <nom_du_binaire> pour observer
le code machine généré. Cherchez le code correspondant à la fonction brother
et comparez les deux versions, que remarquez vous (cherchez sur internet ce
que fait l’instruction call) ? Expliquez pourquoi le compilateur à pu faire cette
optimisation.

1

https://www.tutorialspoint.com/compile_haskell_online.php
https://www.online-python.com/

TD 5 2

Exercice 5.2 Evaluation strategy

Question 5.2.1 Haskell
Exécutez le code suivant en Haskell qui permet d’afficher la taille d’une liste

statique d’éléments. Expliquez le résultat obtenu et ce que vous pouvez en
déduire concernant la stratégie d’évaluation utilisée dans le langage Haskell.

main :: IO ()
main = print . length $ [(122+15), (3*21), (50-4), (18/0)]

Question 5.2.2 Python
Écrivez un programme permettant de trouver si le langage Python utilise une

méthode de passage des paramètres par valeur, par référence ou par partage.
Pour tester le passage par partage un de vos appels de fonction devra utiliser
le type list qui peut se déclarer statiquement comme dans l’exemple suivant et
qui est mutable dans ce langage :

def function_example(my_list):
print(list)

list = [1,2,3,'soleil']
function_example(list)
print(list)

	TD 5 : Python, C, Haskell - Tail recursion, Siblings calls, Evaluation strategy

