
TD 6 - Programmation Avancée

Hugo Bolloré1

1hugo.bollore@uvsq.fr

Dans ce TD nous utiliserons plusieurs langages, le C, le Javascript et le
Python.

Pour le langage Javascript, pour rappel vous avez 2 choix :

1. Dans votre navigateur, allez sur le site https://playcode.io/javascript

2. Téléchargez le package nodejs, écrivez le code dans un fichier script_name.js
et le lancer avec :

node script_name.js

Pour langage Python :

1. Dans votre navigateur, allez sur le site https://www.online-python.com/

Exercice 6.1 Iterative et Recursive

Question 6.1.1 Boucle itérative
Développer en C, une fonction ’facto’ avec une boucle itérative qui prendra

en entrée un entier n positif et retournera la factorielle de n.

Question 6.1.2 Boucle récursive
Transformer la fonction que vous venez d’écrire pour qu’elle utilise une récur-

sion.

Question 6.1.3 Optimisation
Il y a-t-il une optimisation possible ? Si oui, modifier votre code et appliquer

cette optimisation.

Exercice 6.2 Impératif vs Fonctionnel

Question 6.2.1 Langage impératif
Écrivez en Python, un code impératif qui effectuera les actions suivantes sur

une liste d’entier:

• Effectue le carré sur tout les élements de la liste,

• Récupère tous les nombres pairs de la nouvelle liste,

• Effectue une reduction sur la nouvelle liste.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

CODE HERE

print("La somme des carrés pairs est :", sum)

Question 6.2.2 Fonction reduce
Écrivez en Python, une fonction reduce qui prend en entrée 3 arguments :

• func : une fonction qui sera appliqué a chaque élements de l’iterable,

• iterable : un iterable (list, tuple, etc.),

1

https://playcode.io/javascript
https://www.online-python.com/

TD 6 2

• initial : un entier qui sera la valeur initial de la reduction.

La fonction reduce effectuera la reduction d’un iterable et renverra donc la
somme de tous les élements + la valeur initiale.

Question 6.2.3 Langage fonctionnel
Transformer le code impératif de la première question en code fonctionnel.

Pour cela, vous ne devriez pas utiliser de boucle et vous aurez besoin des fonc-
tions map, filter et de la fonction reduce que vous venez d’écrire.

Bonus : Utilisez des fonctions anonymes dans votre code.

TD 6 3

Exercice 6.3 Cast

En utilisant le fichier data.set qui vous sera fourni, calculez la différence
entre les 50 valeurs des tableaux uintVals et intVals, stockez celles-ci dans des
long int, et calculez et affichez la moyenne de toutes les différences qui sont
inférieures à 888.

Pour pouvoir lire les données binaires contenues dans le fichier data.set vous
devrez partir du code suivant (le fichier data.set devra être copié dans le même
répertoire que votre programme compilé) :

#include <stdio.h>
#include <stdlib.h>

#define NB_VALS 50

void main()
{

FILE* fp;
unsigned int uintVals[NB_VALS];
int intVals[NB_VALS];
int returnValue = 0;

fp = fopen("data.set", "rb");
if (fp == NULL) {

fprintf(stderr, "Cannot open file data.set\n");
exit(-1);

}

returnValue = fread(uintVals, sizeof(unsigned int), NB_VALS, fp);
if (returnValue != NB_VALS) {

fprintf(stderr, "Cannot read %d blocks in file data.set\n", NB_VALS);
exit(-1);

}

returnValue = fread(intVals, sizeof(int), NB_VALS, fp);
if (returnValue != NB_VALS) {

fprintf(stderr, "Cannot read %d blocks in file data.set\n", NB_VALS);
exit(-1);

}
}

Vous devriez obtenir une moyenne de -453110824.230769.

TD 6 4

Exercice 6.4 Closure

function factorial(n) {
if (n <= 1) return 1;
let result = 1;
for (let i = 2; i <= n; i++) {

result *= i;
}
return result;

}

Refactorisez la fonction de calcul de la factorielle, ci dessus, en utilisant une
closure pour mémoriser les résultats précédemment calculés. Ainsi, lorsque la
même valeur est demandée, vous pourrez renvoyer le résultat directement depuis
le cache sans avoir à refaire le calcul.

• Écrivez une fonction create_optimized_factorial qui créé une fonction de
calcul de la factorielle.

• La fonction retournée par create_optimized_factorial doit mémoriser les
résultats précédents dans un cache (un tableau dont les indexes seront les
valeurs de n et cache[n] = factorial(n)).

• Si la fonction est appelée avec un nombre pour lequel la factorielle a déjà
été calculée, elle doit renvoyer directement le résultat du cache et afficher
un message disant que le resultat vient du cache.

• Si la fonction est appelée avec un nouveau nombre, elle doit calculer la
factorielle, la stocker dans le cache, et renvoyer le résultat.

const factorial = create_optimized_factorial();

console.log(factorial(6)); // Affiche "720"
console.log(factorial(5)); // Affiche "120"
console.log(factorial(5)); // Affiche "Utilisation du cache : 120"
console.log(factorial(7)); // Affiche "5040"
console.log(factorial(6)); // Affiche "Utilisation du cache : 720"

Bonus : Si ce n’est pas déjà le cas, modifiez votre code pour que soit mis
en cache les résultats intermédiaires du calcul d’une factorielle. Votre affichage
devrait être celui-ci.

console.log(factorial(6)); // Affiche "720"
console.log(factorial(5)); // Affiche "Utilisation du cache : 120"
console.log(factorial(5)); // Affiche "Utilisation du cache : 120"
console.log(factorial(7)); // Affiche "5040"
console.log(factorial(6)); // Affiche "Utilisation du cache : 720"

	TD 6 : Programmation Avancée

