TD 6 - Programmation Avancée

Hugo Bolloré!

'hugo.bollore@uvsq.fr

Dans ce TD nous utiliserons plusieurs langages, le C, le Javascript et le
Python.
Pour le langage Javascript, pour rappel vous avez 2 choix :

1. Dans votre navigateur, allez sur le site https://playcode.io/javascript

2. Téléchargez le package nodejs, écrivez le code dans un fichier script _name.js
et le lancer avec :

node script_name.js

Pour langage Python :

1. Dans votre navigateur, allez sur le site https://www.online-python.com/

Exercice 0.1 Tterative et Recursive

Question 6.1.1 Boucle itérative
Développer en C, une fonction ’facto’ avec une boucle itérative qui prendra
en entrée un entier n positif et retournera la factorielle de n.

Question 6.1.2 Boucle récursive
Transformer la fonction que vous venez d’écrire pour qu’elle utilise une récur-
sion.

Question 6.1.3 Optimisation
Il y a-t-il une optimisation possible ? Si oui, modifier votre code et appliquer
cette optimisation.

Exercice 6.2 Impératif vs Fonctionnel

Question 6.2.1 Langage impératif
Ecrivez en Python, un code impératif qui effectuera les actions suivantes sur
une liste d’entier:

e Effectue le carré sur tout les élements de la liste,
e Récupére tous les nombres pairs de la nouvelle liste,
e Effectue une reduction sur la nouvelle liste.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

CODE HERE

. n

print("La somme des carrés pairs est :", sum)

Question 6.2.2 Fonction reduce
Ecrivez en Python, une fonction reduce qui prend en entrée 3 arguments :
e func : une fonction qui sera appliqué a chaque élements de l'iterable,

e iterable : un iterable (list, tuple, etc.),

https://playcode.io/javascript
https://www.online-python.com/

TD 6 2

e initial : un entier qui sera la valeur initial de la reduction.

La fonction reduce effectuera la reduction d’un iterable et renverra donc la
somme de tous les élements + la valeur initiale.

Question 6.2.3 Langage fonctionnel

Transformer le code impératif de la premiére question en code fonctionnel.
Pour cela, vous ne devriez pas utiliser de boucle et vous aurez besoin des fonc-
tions map, filter et de la fonction reduce que vous venez d’écrire.

Bonus : Utilisez des fonctions anonymes dans votre code.

TD 6 3

Exercice 6.3 Cast

En utilisant le fichier data.set qui vous sera fourni, calculez la différence
entre les 50 valeurs des tableaux wintVals et intVals, stockez celles-ci dans des
long int, et calculez et affichez la moyenne de toutes les différences qui sont
inférieures & 888.

Pour pouvoir lire les données binaires contenues dans le fichier data.set vous
devrez partir du code suivant (le fichier data.set devra étre copié dans le méme
répertoire que votre programme compilé) :

#include <stdio.h>
#include <stdlib.h>

#define NB_VALS 50

void main()
{
FILE* fp;
unsigned int uintVals[NB_VALS];
int intVals[NB_VALS];
int returnValue = 0;

fp = fopen("data.set", "rb");

if (fp == NULL) {
fprintf (stderr, "Cannot open file data.set\n");
exit(-1);

}

returnValue = fread(uintVals, sizeof (unsigned int), NB_VALS, fp);
if (returnValue !'= NB_VALS) {

fprintf (stderr, "Cannot read %d blocks in file data.set\n", NB_VALS);

exit(-1);
}

returnValue = fread(intVals, sizeof(int), NB_VALS, fp);
if (returnValue !'= NB_VALS) {

fprintf (stderr, "Cannot read %d blocks in file data.set\n", NB_VALS);

exit(-1);

Vous devriez obtenir une moyenne de -453110824.230769.

TD 6

Exercice 6.4 Closure

function factorial(n) {
if (n <= 1) return 1;

let
for

}

result = 1;

(let 1 = 2; i <= n; i++) {

result *= i;

return result;

Refactorisez la fonction de calcul de la factorielle, ci dessus, en utilisant une
closure pour mémoriser les résultats précédemment calculés. Ainsi, lorsque la
méme valeur est demandée, vous pourrez renvoyer le résultat directement depuis
le cache sans avoir a refaire le calcul.

e Ecrivez une fonction create optimized factorial qui créé une fonction de
calcul de la factorielle.

e La fonction retournée par create optimized factorial doit mémoriser les
résultats précédents dans un cache (un tableau dont les indexes seront les
valeurs de n et cache[n] = factorial(n)).

e Si la fonction est appelée avec un nombre pour lequel la factorielle a déja
été calculée, elle doit renvoyer directement le résultat du cache et afficher
un message disant que le resultat vient du cache.

e Si la fonction est appelée avec un nouveau nombre, elle doit calculer la
factorielle, la stocker dans le cache, et renvoyer le résultat.

const factorial = create_optimized_factorial();

console.
console.
console.
console.
console

Bonus :

log(factorial(6));
log(factorial(5));
log(factorial(5));
log(factorial(7));

.log(factorial(6));

// Affiche
// Affiche
// Affiche
// Affiche
// Affiche

H720 n

/I120 n

"Utelisation du cache : 120"
Il5040!l

"Utilisation du cache : 720"

Si ce n’est pas déja le cas, modifiez votre code pour que soit mis

en cache les résultats intermédiaires du calcul d’une factorielle. Votre affichage
devrait étre celui-ci.

console.
console.
console.
console
console.

log(factorial(6));
log(factorial(5));
log(factorial(5));

.log(factorial(7));

log(factorial(6));

// Affiche
// Affiche
// Affiche
// Affiche
// Affiche

II720 n
"Utilisation du cache : 120"
"Utilisation du cache : 120"
H5040H
"Utilisation du cache : 720"

	TD 6 : Programmation Avancée

